Some privacy-enhancing
technologies

Artem Kruglov, Skyori

Disclaimer

e Third-party materials are used (links are provided at the end of the
document)

Motivation

* Modern cryptography is usually considered to have its beginning in
the landmark papers of Diffie and Hellman, who introduced the
concept of public key encryption, and of Rivest,Shamir and Adelman
who suggested a concrete public key system. The fundamental
theoretical studies along these lines originate in the late 1970’s, and
the results — the well-known cryptographic primitives of public key
encryption, authentication and digitalsignature - have been widely
applied in practice during the 1990’s. However, theoretical
cryptography provided additional, powerful (and perhaps less
intuitive) tools.

Motivation

* This review is a part of the preparation for practical use such
technologies

* In our focus there are cryptographical methods and technologies that
provides privacy using transformation data not division of data access

* Consider such technologies as primitivies for further business
software development based on this primitives

Content

* The purpose of the application of privacy-enhancing technologies
* Review some of privacy-enhancing technologies

* Conclusions

The purpose of the application of
orivacy-enhancing technologies

“...Privacy is necessary for an open society in the electronic age. Privacy
is not secrecy. A private matter is something one doesn't want the
whole world to know, but a secret matter is something one doesn't
want anybody to know. Privacy is the power to selectively reveal

oneself to the world.”

«A Cypherpunk's Manifesto» by Eric Hughes

Privacy-enhancing technologies

* Privacy-enhancing technologies (PETs) are technologies that embody
fundamental data protection principles by minimizing personal data
use, maximizing data security, and empowering individuals.

* PETs have evolved since their first appearance in the 1980s. In
intervals, review articles published the stats of privacy technology

https://medium.com/golden-data/data-protection-principles-under-eu-data-protection-law-9b6c985d94da

Examples of existing privacy enhancing
technologies

* Communication anonymizers

e Shared bogus online accounts

* Obfuscation

* Access to personal data

* Enhanced privacy ID (EPID)

* Blinding

* Format-preserving encryption (FPE)
* Homomorphic encryption

* Zero-knowledge

e Secure multi-party computation

Other PETs

* Limited disclosure technology,
 Anonymous credentials such as online car rental,
* Negotiation and enforcement of data handling conditions,

 Data transaction log

Some privacy-enhancing
technologies

Consider the following technologies

1. Secure multi-party computation
2. Zero-knowledge proof
3. Homomorphic encryption

Trusted Execution Environments Homomorphic Encryption Secure Multi-Party Computation Personal Data Stores (b)

« Securely outsourcing to a server, or cloud, - Securely outsourcing specific operations - Enabling joint analysis on sensitive « Individual managing with whom and

Type of privacy

computations on sensitive data

Privacy risk + Revealing sensitive attributes present in
addressed a dataset
Data protected + In storage

-

During computing

Benefits + Commercial solutions widely available
Zero loss of information

-

Current limitations Many side-channel attacks possible

on sensitive data
« Safely providing access to sensitive data

- Revealing sensitive attributes present in
a dataset

- In storage
« During computing

» Can allow zero loss of information
« FHE* can support the computation
of any operation

« FHE currently inefficient, but SHE* and PHE*
are usable

« Highly computationally intensive; bandwidth
and latency issue

« Running time

« PHE and SHE support the computation
of limited functions

« Standardisation in progress

data held by several organisations

Revealing sensitive attributes
present in a dataset

During computing

No need for a trusted third party -
sensitive information is not revealed
to anyone

The parties obtain only the resulting
analysis or model

Highly compute and
communication intensive

how they share data

+ De-centralising services that rely

on user data

» Undesired sharing of sensitive

information

« At point of collection
+ During computing (locally)

- Gives full control to individuals
+» Removes the risk of attacks on

‘honeypots’ of centralised data

+ Analysis can be run locally

+ Impracticality of individual

controlling data sharing with
many parties

PHE:
Product

Readiness level Product PSI%, PIR*. Product

Product

Proof of concept
— pilot

Qualification criteria « Specialist skills
« Custom protocols

- Computing resources

= Specialist skills
« Custom protocols
- Computing resources

Secure multi-party computation

Secure Function Evaluation (SFE)
Secure Multiparty Computation (SMC)
Multi-Party Computation (MPC)

Main idea

parties jointly compute a
function over their inputs
while keeping those inputs
private

Riddle (on russian)

10 11 12 13 14 15 16 17

PCTY®XIUUIIIIBbBIbDIO S

18 19 20 21 22 23 24 25 26

KINUKIMHOII

27 28 29 30 31 32 33

Main idea

Multi Party Computation:

Average Salary

Average salary = (X6 -~ 874346) + 6

X6 = X5 + Steve's salary X1 = Ada's solary + 874,346

Steve Satoshi

X5 = X4 + Alon’s salary
X2 = X1 + Satoshi’s salary

Alan Grace

X3 = X2 + Grace's salary
X4 = X3 + Bill's salary

Bill

Sacret X: 42 X=X, + X, X, =50, X,=-8
SecretY: 23 Y=Y+, ¥i=20, Y;=3
Compute X + Y = ? (65)

Computer 1 Computer 2

| — i1 | — 11 -]

x.""f] x?*'YQ

50 +20="T0 B+3=-5 T0-5=865

Application

* threshold cryptography and key management

* private multi-party machine learning and data analysis
(https://www.soda-project.eu/)

e private information retrieval (from DBs)

* private DNA comparisons,

* privacy-preserving auctions,

* privacy-preserving appointment scheduling
* privacy-preserving anythings©

https://www.soda-project.eu/

:(keyTango

Alibaba Group
MREEs

qedit

\

E)

BOLT LABS

A

KEYL=SS

UNBCO)UND
(

uuuuuuuuuuuuuu)

«® VANTEUM

NSeEPIOR

7
g
\;ﬂ
OFFCHAIN

LABS

blocksecsys

A MI S
’ dustrial Technelogy
Research mstitute

CYBAVO
PARTISIA
galois
AN ARPA

@cosmion

.

. CYBERNETICA

curv

"

N ®
@ fragmentiX
QUANTUM SAFE STORAGE SOLUTIONS

cryptoworth

TN
TSINGJIAQ
INFORMATION
SCIENCE

salesforce

Gﬂl()mO
@ INSIGHTS NETWORK

) SPHERITY

Acronis

SAMSUNG SDS

B Fireblocks

O

PlatON

< Fressets

¥ sHARDX

& pigital Garage

Pantas-coam

% 1JSTECHNOLOGIES

Q2 BYTOM
N
Y SECRETS

XXLSEC

M

THRESHOLD

How to use this technology

* https://git

hub.com/topics/secure-computation 40

* https://git

nub.com/topics/mu

tiparty-computation 36

* https://git

hub.com/topics/mu

ti-party-computation 23

* https://git

nub.com/topics/mu

tiparty 20

private Al technologies https://www.openmined.org/

https://github.com/topics/secure-computation
https://github.com/topics/multiparty-computation
https://github.com/topics/multi-party-computation
https://github.com/topics/multiparty
https://www.openmined.org/

/ero-knowledge proof

Main idea

A family of protocols that verifies the truth of a certain statement without
disclosing it.

Example:

 proof that you ran a computer program on some input and you got some
output. If you run a program P with some input x and get some outputy =
P(x), you can generate a ZK-SNARK, which you can give to someone else to
convince someone else that y actually is the result of running P(x).

* The proof can be verified much more quickly than running P directly, so it's a
powerful tool for trustlessly outsourcing computation.

zkSNARK definition

Generator (C circuit, A is €2): function C(x, w) |
(pk, vk) = G(A, ©)

Prover (x pub inp, w sec inp):
T = P(pk, X, w)

Verifier:

V(vk, x, 1) == (3 ws.t. Cx,w))

return (sha256(w) = x);

Range (Age) proof example

F(X,Y) = Z

Your function (check 18+)
Public input (id)
Private input (your age)

Public output (Confirmation 18+)

Here is X and Z, I know of an Y
such that F(X, Y) = 2Z

* Computation
* = Arithmetic Circuit
* - R1CS (Rank 1 Constraint System)

* > QAP (Quadratic Arithmetic
Program)

* - zk-SNARK

Trusted setup

* Procedure of generation trusted parameters

* After its finished, rules and parameters of this procedure can not be
verified, you can only trust it. You can verify it if only you are
participant of this procedure.

/KP family

Proof Size Prover Time Verification
Time
SNARKS
(has trusted setup)
STARKS 45KB-200KB

Bulletproofs 30s 1100ms

Application

* Cryptocurrency private transactions

* Range proofs
 Membership/non-membership proofs
* Correct behavior proofs

How to use this technology

e https://hackmd.io/@zkteam/gnark
e https://github.com/ConsenSys/gnark
e https://zinc.matterlabs.dev/

 https://github.com/topics/zero-knowledge 122
 https://github.com/topics/zero-knowledge-proofs 78
e https://github.com/topics/zk-snarks 66

* https://github.com/topics/zkp 19

https://github.com/topics/zero-knowledge
https://github.com/topics/zero-knowledge
https://zinc.matterlabs.dev/
https://github.com/topics/zero-knowledge
https://github.com/topics/zero-knowledge-proofs
https://github.com/topics/zk-snarks
https://github.com/topics/zkp

Homomorphic encryption

Homomorphic encryption

* Homomorphic encryption is a form of encryption with an additional
evaluation capability for computing over encrypted data without
access to the secret key

* Craig Gentry, using lattice-based cryptography, described in 2009 the
first plausible construction for a fully homomorphic encryption
scheme

* Partially homomorphic encryption encompasses schemes that
support the evaluation of circuits consisting of only one type of gate,
e.g., addition or multiplication

* https://github.com/topics/homomorphic-encryption 135

https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Craig_Gentry_(computer_scientist)
https://en.wikipedia.org/wiki/Lattice-based_cryptography
https://github.com/topics/homomorphic-encryption

Compare with some PETs

* Homomorphic encryption is indeed powerful, but it's a quite different
tool than ZK-SNARKs:

* In general, doing things with ZK-SNARKs requires all of the private information
to be held by one party (the prover) at the point in time.

* Homomorphic encryption, obfuscation, MPC, and the rest are valuable
because they enable computations where different inputs are held by
different people and neither party learns the private information of the
others.

* In the case of homomorphic encryption, one party retains the privacy of their
data, and the other party retains the privacy of what program they ran on the
data. You could also use homomorphic encryption for computation
outsourcing for scalability, but in practice the overhead of homomorphic
encryption is too high for that to be practical at present.

Application

* Secure computing

Traditional Cloud Storage and Computation Microsoft SEAL Cloud Storage and Computation
Privacy Barmier [access pobcy) Privacy Barier fcryptographic
SN S B 2, Ny s
A
v
) > S 8 “

fol & R £

http://www.humangenomeprivacy.org/
https://www.openmined.org/
https://morfix.io/
https://coronatrace.org/

Application

* Privacy-preserving machine learning using homomorphic encryption
* Private Al technologies https://www.openmined.org/

e Secure genome analysis using Homomorphic Encryption -
http://www.humangenomeprivacy.org

e COVID Alert https://coronatrace.org/
* Homomorphic encryption as a service https://morfix.io

https://www.openmined.org/
http://www.humangenomeprivacy.org/
https://coronatrace.org/
https://morfix.io/

Participants in standardization workshops
from the industry

* Microsoft CryptoExperts
Samsung SDS Algorand Foundation
Intel Mercedes Benz
Duality Technologies Alibaba Group
IBM LinkedIn
Inpher IXUP
Google Intertrust
SAP
Intuit

General Dynamics
Mastercard

http://duality.cloud/
https://www.inpher.io/
https://ixup.com/

How to use this technology

 HELib: An early and widely used library from IBM that supports the BGV scheme and bootstrapping.

. Mihcrosoft SEAL: A widely used open source library from Microsoft that supports the BFV and the CKKS
schemes.

e PALISADE: A widely-used Oﬁen source library from a consortium of DARPA-funded defense contractors that
provides lattice cryptography building blocks and supports leading homomorphic encryption schemes.

 FHEW / TFHE: (Torus-FHE) GSW-based libraries with fast bootstrapped operations. TFHE is designed from
FHEW, which is no longer actively being developed.

 HeaAn: This library implements the CKKS scheme with native support for fixed point approximate arithmetic.
e NOA (pronounced “L O L”): This is a Haskell library for ring-based lattice cryptography that supports FHE.

* NFLlib: This Iibrar?/ is an outgrowth of the European HEAT project to explore high-performance homomorphic
encryption using low-level processor primitives.

* HEAT: This library focuses on an API that bridges FV-NFLib and HelLIB.
* HEAT: A HW accelerator implementation for FV-NFLIib.

e cuHE: This library explores the use of GPGPUs to accelerate homomorphic encryption.
» Lattigo: This is a lattice-based cryptographic library written in Go.
* https://homomorphicencryption.org/

https://github.com/shaih/HElib
https://www.microsoft.com/en-us/research/project/microsoft-seal
https://palisade-crypto.org/
https://github.com/lducas/FHEW
https://tfhe.github.io/tfhe
https://github.com/kimandrik/HEAAN
https://github.com/cpeikert/Lol
https://github.com/quarkslab/NFLlib
https://github.com/bristolcrypto/HEAT
https://github.com/KULeuven-COSIC/HEAT/
https://github.com/vernamlab/cuHE
https://github.com/lca1/lattigo
https://homomorphicencryption.org/

Conclusions

Conclusions

* Privacy-enhancing technologies are difficult for using in practice and
are needed mathematical background of software developers

* There are many example on difference programming languages

* There are some projects that creating frameworks and platforms for
simplify using such privacy technologies aimed to be an enterprise-
level software development tools

Links

Links

 Homomorphic Encryption https://homomorphicencryption.org/

* the iDASH project on Secure Genome Analysis
http://www.humangenomeprivacy.org

* https://www.microsoft.com/en-us/research/project/microsoft-seal/

« Awesome Homomorphic Encryption
https://github.com/jonaschn/awesome-he

* OpenMined, private Al technologies. https://www.openmined.org/

https://homomorphicencryption.org/
http://www.humangenomeprivacy.org/
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://github.com/jonaschn/awesome-he
https://www.openmined.org/

Links

* the MPC alliance https://www.mpcalliance.org/

e D. Malkhi, N. Nisan, B. Pinkas and Y. Sella. Fairplay — a secure two-
party computation system. In Proc. of 13th USENIX Security
Symposium, 2004.

* A Cypherpunk's Manifesto by Eric Hughes

* https://en.wikipedia.org/wiki/Privacy-enhancing technologies

* https://en.wikipedia.org/wiki/Homomorphic encryption

* https://royalsociety.org/-/media/policy/projects/privacy-enhancing-
technologies/privacy-enhancing-technologies-report.pdf

https://www.mpcalliance.org/
ftp://soda.berkeley.edu/pub/cypherpunks/people/hughes.html
https://en.wikipedia.org/wiki/Privacy-enhancing_technologies
https://en.wikipedia.org/wiki/Homomorphic_encryption
https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/privacy-enhancing-technologies-report.pdf

