

Мизгирева Юлия

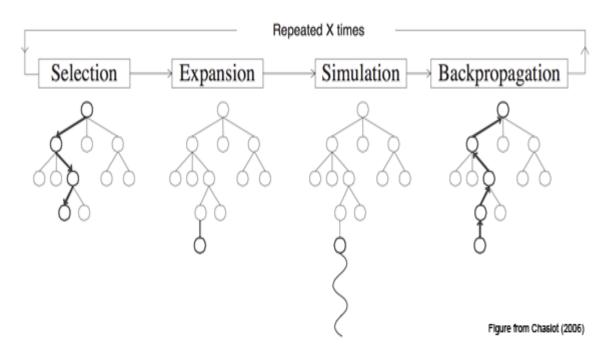
От Го до AlphaGo

Го (вэйцы, бадук)

- Другие названия игры:
 дзаин («сидящий отшельник») и ран-ка
 («сгнившее топорище»)
- Возникла 2500-5000 лет назад в Китае (?)
- ~ VII век н.э. -- была завезена в Японию
- 2 половина XIX века -- из Японии завезена в Европу (получила популярность во 2 половине XX века, в России -- с1965 года)

Правила

- Доска 19х19 (181 черный камень + 180 белых)
- Камни ставятся на пересечения
- Черные ходят первыми, затем по очереди (можно пасовать пас считается ходом)
- Цель захват территории, большей, чем у противника
- Захваченные камни снимаются с доски
- Правило ко запрет на повторение позиции
- Самоубийственные ходы запрещены
- Территория считается по количеству свободных пересечений внутри живой группы игрока + пленные камни
- Игра заканчивается после двух пасов подряд


Сложность компьютерной реализации

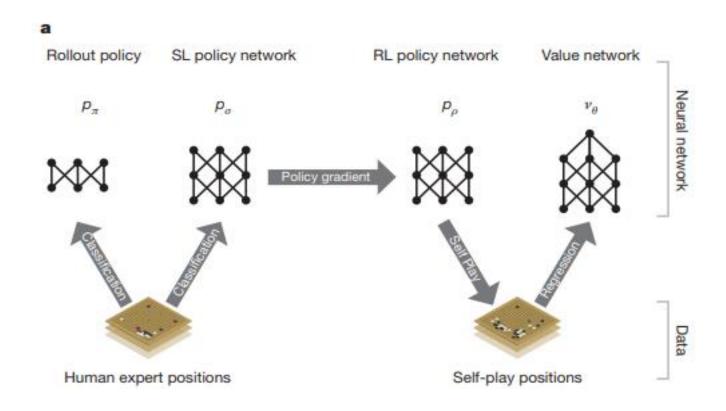
- Количество вариантов дальнейшего хода исчисляется сотнями
- Камни образуют группы (не всегда очевидно, как отдельный ход повлияет на исход игры)

Monte Carlo Tree Search (MCTS)

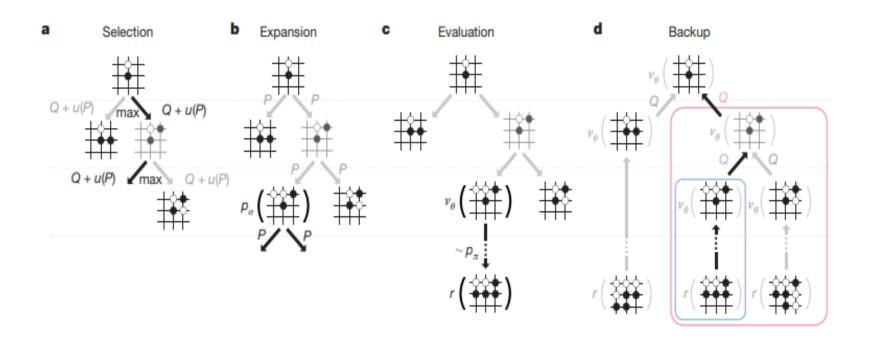
 В каждой ноде сохраняется value (~вероятность победы) и количество раз посещения ноды

AlphaGo

- MCTS + нейросетки
- Нейросетки используются для оценки value каждой ноды дерева
- 2 типа нейросеток:
 - Policy networks (2 нейросетки -- "медленная" и "быстрая"): состояние доски -> какой бы ход сделал человек? (supervised learning + последующий reinforcement learning)
 - Value network: состояние доски -> вероятность выиграть/проиграть (число от -1 до 1)
- "Медленная" -- для поиска следующей ноды в MCTS; "быстрая" для симуляций, чтобы оценить value следующей ноды.
- Value network без симуляций оценивает value следующей ноды.
 Итоговое value взвешенная сумма этих двух посчитанных ранее value.


Features

Extended Data Table 2 | Input features for neural networks


Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).

Схематическая архитектура AlphaGo

Monte Carlo Tree Search в AlphaGo

AlphaGo vs Ли Седоль (9 дан)

- Март 2016
- 5 партий: 4:1
- "I, Lee Sedol, lost, but mankind did not"

AlphaGo Zero

- Отличия от AlphaGo:
 - Для обучения не использовались партии профессиональных игроков (только self-play);
 - Не использовались заранее рассчитанные фичи;
 - МСТЅ использовался в фазе обучения;
 - o Policy network и Value network объединены в одну нейросеть;
 - Подход легко обобщается и для других игр с полной информацией (шахматы, сёги...).