Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Part One

- One-way Functions (Hash Functions)
- Diffie-Hellman Protocol
- RSA Protocol
- DSA Protocol
- Elliptic curves cryptography basics

Part Two

- Schnorr signature algorithm
- ECDSA protocol
- BLS protocol
- NODR crypto-protocol (BLS-based)
- Beyond modern cryptography

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

One-way Functions (Hash Functions)

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Diffie-Hellman Protocol

Diffie, Hellman, Merkle: 1976

Where do shared secret keys comes from?
A remarkable solution: (basic) Diffie-Hellman
Fix prime p and $g \in F_{p}$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Diffie-Hellman Protocol

Security of Diffie-Hellman (eavesdropping only)

Eavesdropper sees: $p, g, A=g^{a}(\bmod p)$, and $B=g^{b}(\bmod p)$
Can she compute $\quad g^{\text {ab }}(\bmod p) \quad ? ?$
CDH problem $(\bmod p):$ given random $\left(g, g^{a}, g^{b}\right)$ compute $g^{a b}(\bmod p)$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Diffie-Hellman Protocol

- Interactive
- Symmetric encryption
(can we construct non-interactive?)
(can we construct asymmetric?)
Asymmetric Encryption

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

RSA Protocol (Rivest, Shamir, Adelman, 1977)

Generate key:

1. Generate two large unique prime numbers \boldsymbol{p} and \boldsymbol{q}
2. Compute $n=p \times q$ and $\varphi=(p-1) \times(q-1)$
3. Select a random number $1<e<\varphi$ such that $\operatorname{gcd}(e, \varphi)=1$
4. Compute the unique integer $1<d<\varphi$ such that $e \times d \equiv 1(\bmod \varphi)$
5. (d, n) is the private key
6. (e, n) is the public key

Encryption

1. Represent a message as an integer m in the interval $[0, \mathrm{n}-1]$
2. Send out the encrypted data c

$$
\mathrm{c}=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{n}
$$

Decryption:

1. Decrypt the key using $\mathrm{m}=\mathrm{c}^{\mathrm{d}} \bmod \mathrm{n}$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

DSA Protocol

Encrypt ciphertext $=$ message $\bmod n$
Decrypt message $=$ ciphertext $^{d} \bmod n$

Sing signature $=$ message ${ }^{d} \bmod n$
Verify message $=$ signature $^{e} \bmod n$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Elliptic curves cryptography basics

I DON'T UNDERSTAND WHY PEOPLE GET CONFUSED ... I DON'T LOOK ANYTHING
 LIKE YOU!

I THINK IT'S THE NAME!
LET'S ASK JAVA AND JAVASCRIPT TO SEE HOW THEY DEAL WITH IT

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Elliptic curves cryptography basics

Elliptic curve equation
$y^{2}=x^{3}+a x+b$
Point addition operation

$$
\begin{aligned}
& P+R=Q \quad Q-R=P \\
& A+(B+C)=(A+B)+C \\
& P+O=O+P=P \\
& P+P=2 P \\
& P+P+P=3 P \\
& P+P+P+P=4 P
\end{aligned}
$$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Elliptic curves cryptography basics

Addition of points $\mathrm{P}_{1}=\left(x_{1}, y_{1}\right)$ and $\mathrm{P}_{2}=\left(x_{2}, y_{2}\right)$ of an elliptic curve $E: y^{2}=x^{3}+a x+b$ can be easily computed using the following formulas:
where

$$
P_{1}+P_{2}=P_{3}=\left(x_{3}, y_{3}\right)
$$

$$
\begin{gathered}
x_{3}=\lambda^{2}-x_{1}-x_{2} \\
y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
\end{gathered}
$$

and

$$
\boldsymbol{\lambda}= \begin{cases}\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) & \text { If } \mathrm{P}_{1} \neq \mathrm{P}_{2} \\ \left(3 x_{1}^{2}+a\right) /\left(2 y_{1}\right) & \text { If } \mathrm{P}_{1}=\mathrm{P}_{2}\end{cases}
$$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Elliptic curves cryptography basics

Elliptic curve equation
$y^{2}=x^{3}+a x+b \quad \bmod \boldsymbol{p}$
Point addition operation

$$
\begin{aligned}
& P+R=Q \quad Q-R=P \\
& A+(B+C)=(A+B)+C \\
& P+O=O+P=P \\
& P+P=2 P \\
& P+P+P=3 P \\
& P+P+P+P=4 P
\end{aligned}
$$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Elliptic curves cryptography basics

$$
\text { Set } p=23, y^{2} \bmod p=x^{3}+1 x+0 \bmod p .
$$

Choose $\mathrm{G}=(9,5)($ on curve: $25 \bmod 23=729+9 \bmod 23)$
The 23 points on this curve:
$(0,0)(1,5)(1,18)(9,5)(9,18)$
$(11,10)(11,13)(13,5)(13,18)$
$(15,3)(15,20)(16,8)(16,15)$
$(17,10)(17,13)(18,10)(18,1$
$(19,1)(19,22)(20,4)(20,19)$
$(21,6)(21,17)$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Elliptic curves cryptography basics

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Elliptic curves cryptography basics

```
D.1.2.3 Curve P-256
    E: y }\mp@subsup{y}{}{2}\equiv\mp@subsup{x}{}{3}-3x+b(\operatorname{mod}p
p= 1157920892103562487626974469494075735300861434152903141955
    33631308867097853951
n= 1157920892103562487626974469494075735299969552241357603424
    222590610685120444369
b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6
    3bce3c3e 27d2604b
G}=66b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a
    f4a13945 d898c296
Gy= 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece
    cbb64068 37bf51f5
```


Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Elliptic curves cryptography basics

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)
80	1024	160
112	2048	224
$\mathbf{1 2 8}$	3072	$\mathbf{2 5 6}$
192	7680	384
256	15360	521

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

End Of Part One

Questions

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Part One

- One-way Functions (Hash Functions)
- Diffie-Hellman Protocol
- RSA Protocol
- DSA Protocol
- Elliptic curves cryptography basics

Part Two

- Schnorr signature algorithm
- ECDSA protocol
- BLS protocol
- NODR crypto-protocol (BLS-based)
- Beyond modern cryptography

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Schnorr signature algorithm (1989)

Elliptic curve: $\quad y^{2}=x^{3}+a x+b \bmod p$
Public parameters: $\quad a, b, p, G$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Schnorr signature algorithm (1989)

Elliptic curve:	$y^{2}=x^{3}+a x+b \bmod p$
Public parameters:	a, b, p, G
Alice:	secret key $\alpha \rightarrow$ public key $A=\alpha * G$
Bob:	secret key $\beta \rightarrow$ public key $B=\beta * G$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Schnorr signature algorithm (1989)

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Schnorr signature algorithm (1989)

Elliptic curve:	$y^{2}=x^{3}+a x+b \bmod p$
Public parameters:	a, b, p, G
Alice:	secret key $\alpha \rightarrow$ public key $A=\alpha * G$
Bob:	secret key $\beta \rightarrow$ public key $B=\beta * G$
Signing:	$S=k \quad+\alpha * \operatorname{hash}(m, R) \quad$ ($R=k * G$ - random point)
Signature:	(s, R)

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Schnorr signature algorithm (1989)

Elliptic curve:	$y^{2}=x^{3}+a x+b \bmod p$
Public parameters:	a, b, p, G
Alice:	secret key $\alpha \rightarrow$ public key $A=\alpha * G$
Bob:	secret key $\beta \rightarrow$ public key $B=\beta * G$
Signing:	s
Signature:	(s, R)
Verify:	$S * G$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Schnorr signature algorithm (1989)

Elliptic curve:
Public parameters:
Alice:
Bob:

Signing:
Signature:
Verify:

$$
y^{2}=x^{3}+a x+b \bmod p
$$

$$
a, b, p, G
$$

$$
\text { secret key } \alpha \rightarrow \text { public key } A=\alpha * G
$$

$$
\text { secret key } \beta \rightarrow \text { public key } B=\beta * G
$$

$$
s=k+\alpha * \operatorname{hash}(m, R) \quad(R=k * G \text {-random point })
$$

$$
(s, R)
$$

$$
s * G=k * G+\alpha * \operatorname{hash}(m, R) * G
$$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Schnorr signature algorithm (1989)

Elliptic curve:
Public parameters:
Alice:
Bob:

Signing:
Signature:
Verify:

$$
y^{2}=x^{3}+a x+b \bmod p
$$

$$
a, b, p, G
$$

$$
\text { secret key } \alpha \rightarrow \text { public key } A=\alpha * G
$$

$$
\text { secret key } \beta \rightarrow \text { public key } B=\beta * G
$$

$$
s=k+\alpha * \operatorname{hash}(m, R) \quad(R=k * G-\text { random point })
$$

$$
(s, R)
$$

$$
s * G=R \quad+A * \operatorname{hash}(m, R)
$$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Schnorr signature algorithm (1989)

Google Patents

Method for identifying subscribers and for generating and verifying electronic signatures in a data exchange system
Abstract
n a data exchange system working with processor chip cards, a chip card transmits coded identification datal, v and, proceeding from a random, discrete logarithm r , an exponential value $\mathrm{x}=2$ $(\bmod \mathrm{p})$ to the subscriber who, in turn, generates and transmits a random bit sequence e to the chip card. By multiplication of a stored, private key s with the bit sequence e and by addition of the andom number r, the chip card calculates ay value and transmits the y value to the subscriber w
value coincides with the transmitted x value For an electronic signature a hash value is first value coincides with the transmitted x value. For an electronic signature, a hash value e is first
calculated from an x value and from the message m to be signed and ay value is subsequently calculated from the information r, s and e. The numbers x and y then yield the electronic signature of the message m.

Images (3)

Classifications
(t/1008 Active credit-cards provided with means to personalise their use, e.g. with PINintroduction/comparison system
View 8 more classifications

US4995082A

United States
A Download PDF \quad Q Find Prior Art $\quad \Sigma$ Similar
Inventor: Claus P. Schnorr
Current Assignee : PUBLIC KEY PARTNERS
Worldwide applications
1989 -EP 1990 - DEATEPES JP US
Application US07/484,127 events ©
1989-02-24 - Priority to EP89103290A
1989-02-24 - Priority to EP89103290.6 1990-02-23 - Application filed by Schnorr Claus P 1991-02-19 • Application granted 1991-02-19 • Publication of US4995082A 1993-09-09 - Assigned to PUBLIC KEY PARTNERS © 1996-09-25 - First worldwide family litigation filed © 2010-02-23 - Anticipated expiration 2019-08-13 • Application status is Expired - Lifetime

Perm Summer School on Blockchain \& Cryptomarkets 2019
Survey on a modern cryptography workshop

ECDSA protocol (1999 ANSI, 2000 IEEE and NIST)
ECDSA

1. Calculate $e=\operatorname{HASH}(m)$, where HASH is a cryptograp
2. Let z be the L_{n} leftmost bits of e, where L_{n} is the bit
3. Select a cryptographically secure random
4. Calculate the curve point $\left(x_{1}, y_{1}\right)=k \times G$.
5. Calculate $r=x_{1} \bmod n$. If $r=0$, go
6. Calculate $s=k^{-1}\left(z+r d_{A}\right) \mathrm{mod}_{\mathrm{P}}$
7. The signature is the pair (r, s).

$$
\left(x_{1}, y_{1}\right)=k \times G
$$

$$
6
$$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

BLS protocol

What if CDH were easy?

| Suppose poly-time alg. for CDH: | $\mathbf{P}, \mathbf{u} \cdot \mathbf{P}, \mathbf{v} \cdot \mathbf{P} \Rightarrow$ | (uv) $\cdot \mathbf{P}$ |
| :--- | :--- | :--- | :--- |
| but no poly-time algorithm for: | $\mathbf{P}, \mathbf{u} \cdot \mathbf{P} \not \nRightarrow \mathbf{u}$ | (discrete log) |

Bad for key exchange ... but great for crypto !
Why? "encrypt" $m \in F_{p}$ as $E(m)=m \cdot P$
Then: $\quad m_{1} \cdot P, m_{2} \cdot P \Rightarrow\left(m_{1}+m_{2}\right) \cdot P,\left(m_{1} \cdot m_{2}\right) \cdot P$
Computing on ciphertexts !! (can be made decryptable and secure)

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

BLS protocol

A new tool: pairings

A. Weil (1949): a pairing $\hat{\mathbf{e}}(P, Q)$ on elliptic curves
s.t. for all points P, Q and integers u, v :
one-time CDH

$$
\hat{e}(u \mathbf{P}, v \mathbf{Q})=\hat{e}(\mathbf{P}, \mathbf{Q})^{u \cdot v}
$$

V. Miller (1986): pairing is efficiently computable!

$$
\text { (} u, v \text { unknown) }
$$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

BLS protocol
Asymmetric pairings $\quad \mathrm{e}: \mathrm{G}_{1} \times \mathrm{G}_{2} \rightarrow \mathrm{G}_{\mathrm{T}}$
Non-supersingular curves:

No known DDH algorithm in G_{1} or G_{2}
SXDH assumption: DDH hard in G_{1} and G_{2}

- Used for anonymous IBE, circular insecure enc.

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

BLS protocol (Boneh-Lynn-Shacham, 2004)

Elliptic curve 1:
Elliptic curve 2:
Pairing function:

$$
\begin{aligned}
& y^{2}=x^{3}+a_{1} x+b_{1} \bmod p_{1}, \quad G_{1} \quad \text { (for public and private keys) } \\
& y^{2}=x^{3}+a_{2} x+b_{2} \bmod p_{2}, G_{2} \quad \text { (for hasing and signatures) } \\
& e(\alpha * P, Q)=e(P, Q)^{\alpha}=e(P, \alpha * Q) \\
& e(\alpha * P, \beta * Q)=e(P, Q)^{\alpha \beta}=e(\beta * P, \alpha * Q)
\end{aligned}
$$

Alice: \quad secret key $\alpha \rightarrow$ public key $A=\alpha * G_{1}$

Signing:

$$
S=\alpha * H(m) \quad \text { (no random points!) }
$$

Signature:
Verify:
S

$$
e(A, H(m))=e\left(G_{1}, S\right)
$$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

BLS protocol (Boneh-Lynn-Shacham, 2004)

Elliptic curve 1:
Elliptic curve 2:
Pairing function:

$$
\begin{aligned}
& y^{2}=x^{3}+a_{1} x+b_{1} \bmod p_{1}, \quad G_{1} \quad \text { (for public and private keys) } \\
& y^{2}=x^{3}+a_{2} x+b_{2} \bmod p_{2}, G_{2} \quad \text { (for hasing and signatures) } \\
& e(\alpha * P, Q)=e(P, Q)^{\alpha}=e(P, \alpha * Q) \\
& e(\alpha * P, \beta * Q)=e(P, Q)^{\alpha \beta}=e(\beta * P, \alpha * Q)
\end{aligned}
$$

Alice: \quad secret key $\alpha \rightarrow$ public key $A=\alpha * G_{1}$
Signing:

$$
S=\alpha * H(m) \quad \text { (no random points!) }
$$

Signature:
Verify:
S

$$
\begin{gathered}
e(A, H(m))=e\left(G_{1}, S\right) \\
\ " \\
\boldsymbol{e}\left(\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{H}(\boldsymbol{m})\right)^{\boldsymbol{a}}
\end{gathered}
$$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

BLS protocol (Boneh-Lynn-Shacham, 2004)

Key aggregation and n -of-n multisignature

If we are using multisignature addresses, we are signing the same transaction with different keys. In this case we can do key aggregation like in Schnorr, where we combine all signatures and all keys to a single pair of a key and a signature. Let's take a common 3 -of- 3 multisig scheme (it can be done similarly for any number of signers).

A simple way to combine them is to add all the signatures and all the keys together. The result will be a signature $S=S 1+S 2+S 3$ and a key $P=P 1+P 2+P 3$. It's easy to see that the same verification equation still works:
$e(G, S)=e(P, H(m))$
$e(G, S)=e(G, S 1+S 2+S 3)=e(G,(p k 1+p k 2+p k 3) \times H(m))=e((p k 1+p k 2+p k 3) \times G, H(m))=e(P 1+P 2+P 3, H(m))=e(P, H(m))$

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

NODR crypto-protocol (BLS-based)

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Beyond modern cryptography

Active research in cryptography

- How should we choose the curve to use?
- NIST workshop on elliptic curve standards (6/2015)
- Multilinear maps: [BS03, GGH'12, CLT'15, ...]
- "k-time easy CDH": truly magical apps.
- Obfuscation: hiding secrets in software

- Efficient quantum-resistant crypto

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Beyond modern cryptography

Lattice-based cryptography
Fully homomorphic encryption

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

Beyond modern cryptography

Lattice-based cryptography
Fully homomorphic encryption

Perm Summer School on Blockchain \& Cryptomarkets 2019

Survey on a modern cryptography workshop

End Of Part Two

Questions

